In order to evaluate the impact of a policy intervention on a group of units over time, it is important to correctly estimate the average treatment effect (ATE) measure. Due to lack of robustness of the existing procedures of estimating ATE from panel data, in this paper, we introduce a robust estimator of the ATE and the subsequent inference procedures using the popular approach of minimum density power divergence inference. Asymptotic properties of the proposed ATE estimator are derived and used to construct robust test statistics for testing parametric hypotheses related to the ATE. Besides asymptotic analyses of efficiency and powers, extensive simulation studies are conducted to study the finite-sample performances of our proposed estimation and testing procedures under both pure and contaminated data. The robustness of the ATE estimator is further investigated theoretically through the influence functions analyses. Finally our proposal is applied to study the long-term economic effects of the 2004 Indian Ocean earthquake and tsunami on the (per-capita) gross domestic products (GDP) of five mostly affected countries, namely Indonesia, Sri Lanka, Thailand, India and Maldives.


翻译:为了评估一段时间内政策干预对一组单位的影响,必须正确估计平均处理效果(ATE)措施。由于从小组数据估算ATE的现有程序缺乏稳健性,我们在本文件中采用了一个强有力的估计ATE程序,以及随后采用流行的最小密度功率差异推断法的推论程序。拟议的ATE测算器的占有权性特性是用来为测试与ATE有关的参数假设建立可靠的测试统计数据的。除了对效率和权力进行零星分析外,还进行了广泛的模拟研究,以研究我们在纯数据和受污染数据下拟议的估计和测试程序的有限性能。通过影响功能分析进一步从理论上调查ATE估算器的稳健性。最后,我们的建议用于研究2004年印度洋地震和海啸对五个受影响最大的国家,即印度尼西亚、斯里兰卡、泰国、印度和马尔代夫的(人均)国内产品(国内总产值)的长期经济影响。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员