In this paper, we study the adversarial attacks on influence maximization under dynamic influence propagation models in social networks. In particular, given a known seed set S, the problem is to minimize the influence spread from S by deleting a limited number of nodes and edges. This problem reflects many application scenarios, such as blocking virus (e.g. COVID-19) propagation in social networks by quarantine and vaccination, blocking rumor spread by freezing fake accounts, or attacking competitor's influence by incentivizing some users to ignore the information from the competitor. In this paper, under the linear threshold model, we adapt the reverse influence sampling approach and provide efficient algorithms of sampling valid reverse reachable paths to solve the problem. We present three different design choices on reverse sampling, which all guarantee $1/2 - \varepsilon$ approximation (for any small $\varepsilon >0$) and an efficient running time.
翻译:在本文中,我们研究了在社会网络中动态影响传播模式下对影响最大化的对抗性攻击,特别是,考虑到已知的种子集S,问题在于通过删除有限的节点和边缘来最大限度地减少S的影响。这个问题反映了许多应用情景,例如通过检疫和接种在社会网络中阻隔病毒(如COVID-19)传播,通过冻结假账户阻止谣言传播,或通过鼓励一些用户忽视竞争者提供的信息来攻击竞争者的影响。在本文中,我们根据线性阈值模型,调整反向影响抽样方法,并提供有效反向可达途径抽样的有效算法来解决问题。我们在反向抽样中提出了三种不同的设计选择,这些选择都保证了1/2-\varepsilon$近似值(任何小的瓦雷普斯隆 > 0美元)和高效运行时间。