The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.
翻译:海洋是一个令人印象深刻的复杂数据组合的来源,这些数据可以用来揭示尚未发现的关系。这些数据来自海洋及其表面,例如用于跟踪船只轨迹的自动识别系统(AIS)信息。AIS信息通过无线电或卫星传送,理想的定期间隔,但时间间隔不定期,但随时间变化而变化。因此,本文件的目的是通过神经网络模拟AIS信息传输行为,以预测来自多艘船舶的AIS信息内容,特别是同时使用一种方法,尽管信息在时间上与外界不规则。我们展示了一套实验,其中包括用于预测不同长度的地平线大小任务的多种算法。深度学习模型(例如神经网络)显示,无论时间不规则性,都能充分保护船只的空间意识。我们展示了演进层、向网络和经常性神经网络如何通过合作改进此类任务。我们用短、中、大系列的信息序列实验,我们的模型在相对百分比差异中达到了36/37/38%的比例(低、更好),而我们用92/45/96%的模型观察了El-45/9,而我们用L-40号船舶的周期性预测结果改进了RU%的LNIS的轨道,这些是LNIS的RIS的RIS的周期的逻辑。