项目名称: 偏微分方程最优控制问题的高精度低阶非协调有限元方法研究

项目编号: No.11501527

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 关宏波

作者单位: 郑州轻工业学院

项目金额: 18万元

中文摘要: 偏微分方程最优控制问题在日常生活和工程领域中有着广泛应用,如大气污染控制、温度控制、石油生产和图像处理等方面。由于很多最优控制问题的计算规模十分巨大,对于求解速度的要求很高,所以研究其高精度数值算法就显得尤为重要。事实上,相对于协调元而言,非协调元在计算机并行计算中更具优势。而最优控制问题的解一般具有较低的正则性,因此应首选低阶元来逼近相关变量。本项目主要研究最优控制问题的高精度低阶非协调有限元和混合元逼近方法,其主要内容包括单元构造、误差估计及数值模拟等方面。首先利用低阶非协调元的一些特性,如相容误差比插值误差高一阶,插值算子与Rieze投影等价等,导出最优误差估计及超逼近结果,进而采用插值后处理技术,得到整体超收敛性质,最后给出一些数值算例来验证理论分析的正确性。该项目的研究为最优控制问题的数值计算提供了一种新的途径,对于拓宽非协调有限元方法的应用范围有着重要的理论研究意义和应用价值。

中文关键词: 低阶非协调有限元;最优控制问题;超逼近;超收敛;高精度

英文摘要: Optimal control problems governed by partial differential equations have been widely used in ordinary living and engineering, such as atmospheric pollution control, temperature control, oil exploiting, image processing, and so on. Most of the optimal control problems always have large scale computations and need to be solved quickly, so it is important to study the corresponding high accuracy numerical methods. The nonconforming elements have more advantages than the conforming ones in the parallel computations. The exact solution of the optimal control problems always have low order regularities, so we should choose some low order elements to approximate the variables in the first place. The project aims to research the high accuracy low order nonconforming finite element methods and mixed finite element methods for optimal control problems. The main content includes the constructions of the elements, the error estimates, and the numerical experiments, etc. Firstly, by using the properties of the low order nonconforming elements, such as the consistency error being one order higher than the interpolation error, and the interpolation operator equaling to the Rieze projection, the optimal order error estimates and superclose results will be derived. Then, by employing the post-processing technique, the global superconvergence properties will be obtained. Lastly, some numerical experiments will be carried out to verify the theoretical analysis. The research provides some new choices for numerical computations of the optimal control problems, which have important theoretical significance and practical applications for expanding the applications of the nonconforming finite element methods.

英文关键词: Low order nonconforming finite element;optimal control problems;supercloseness;superconvergence;high accuracy

成为VIP会员查看完整内容
0

相关内容

Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
42+阅读 · 2021年9月15日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
21+阅读 · 2021年4月20日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
深度学习模型压缩算法综述
极市平台
1+阅读 · 2021年12月3日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
清华大学图神经网络综述:模型与应用
机器之心
74+阅读 · 2018年12月26日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
23+阅读 · 2018年10月1日
小贴士
相关VIP内容
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
42+阅读 · 2021年9月15日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
21+阅读 · 2021年4月20日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
NVIDIA 招GNN加速方向实习生,GPU超多~
图与推荐
0+阅读 · 2022年1月24日
深度学习模型压缩算法综述
极市平台
1+阅读 · 2021年12月3日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
清华大学图神经网络综述:模型与应用
机器之心
74+阅读 · 2018年12月26日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
FCS 论坛 | 孟德宇:误差建模原理
FCS
14+阅读 · 2017年8月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员