In this paper, we develop a class of mixed finite element methods for the ferrofluid flow model proposed by Shliomis [Soviet Physics JETP, 1972]. We show that the energy stability of the weak solutions to the model is preserved exactly for both the semi- and fully discrete finite element solutions. Furthermore, we prove the existence and uniqueness of the discrete solutions and derive optimal error estimates for both the the semi- and fully discrete schemes. Numerical experiments confirm the theoretical results.
翻译:在本文中,我们为Shliomis[苏联物理物理,1972年]提议的铁流模型开发了一组混合限量元素方法。我们表明,该模型的薄弱解决方案的能源稳定性完全用于半离散和完全离散的有限元素解决方案。此外,我们还证明了离散解决方案的存在和独特性,并为半离散和完全离散方案得出了最佳误差估计。数字实验证实了理论结果。