Motivated by the fact that forward and backward passes of a deep network naturally form symmetric mappings between input and output representations, we introduce a simple yet effective self-supervised vision model pretraining framework inspired by energy-based models (EBMs). In the proposed framework, we model energy estimation and data restoration as the forward and backward passes of a single network without any auxiliary components, e.g., an extra decoder. For the forward pass, we fit a network to an energy function that assigns low energy scores to samples that belong to an unlabeled dataset, and high energy otherwise. For the backward pass, we restore data from corrupted versions iteratively using gradient-based optimization along the direction of energy minimization. In this way, we naturally fold the encoder-decoder architecture widely used in masked image modeling into the forward and backward passes of a single vision model. Thus, our framework now accepts a wide range of pretext tasks with different data corruption methods, and permits models to be pretrained from masked image modeling, patch sorting, and image restoration, including super-resolution, denoising, and colorization. We support our findings with extensive experiments, and show the proposed method delivers comparable and even better performance with remarkably fewer epochs of training compared to the state-of-the-art self-supervised vision model pretraining methods. Our findings shed light on further exploring self-supervised vision model pretraining and pretext tasks beyond masked image modeling.


翻译:深网络的前向和后向传递自然形成输入和产出表示之间对称的对称映射,我们引入了一个简单而有效的由基于能源模型(EBMS)启发的自我监督的自我监督的愿景模型预培训框架。在拟议的框架中,我们将能源估算和数据恢复模型作为单一网络的前向和后向传递,没有任何辅助组件,例如额外的解码器。对于前向传递,我们将一个网络配置一个能源功能,将低能量分数分配给属于未贴标签的数据集和高能量的样本。对于后向传递,我们利用基于梯度的优化沿能源最小化的方向,反复恢复腐败版本的数据。在这种方式中,我们自然地将隐蔽的图像模型模型用于单一愿景模型前前和后向传输。因此,我们的框架现在接受一系列广泛的借口任务,采用不同的数据模型模型,允许模型从掩蔽的图像模型、补分解的光度和图像恢复,包括超级解析、降压和彩色化的模型。我们提出的自我分析方法,我们提出的业绩分析结论以更精确的自我分析方法展示了我们较弱的自我分析方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2022年9月10日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员