This paper introduces a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside conv-layers of a pre-trained CNN. Each filter in a conv-layer of a CNN for object classification usually represents a mixture of object parts. We develop a simple yet effective method to disentangle object-part pattern components from each filter. We construct an explanatory graph to organize the mined part patterns, where a node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More crucially, given a pre-trained CNN, the explanatory graph is learned without a need of annotating object parts. Experiments show that each graph node consistently represented the same object part through different images, which boosted the transferability of CNN features. We transferred part patterns in the explanatory graph to the task of part localization, and our method significantly outperformed other approaches.


翻译:本文引入了一个图形模型, 即一个解释性图解, 它揭示了在受过训练的CNN 的电离层内隐藏的知识等级。 每个在CNN目标分类的电流层中的过滤器通常代表一个物体的组合。 我们开发了一个简单而有效的方法, 将每个过滤器的物体部分图案组件分解出来。 我们构造了一个解释性图解, 用于组织被开采部分的图案, 其中节点代表一个部分图案, 每个边缘编码 共激活关系和模式间的空间关系。 更重要的是, 如果经过训练的CNN CNN, 解释性图解无需说明对象部分。 实验显示, 每个图案的节点通过不同的图像始终代表同一个对象部分, 这增加了CNN CN 特性的可传输性。 我们将解释性图案中的一部分图案转换到局部化的任务, 我们的方法大大优于其他方法 。

4
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
实战 | 源码入门之Faster RCNN
计算机视觉life
19+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年11月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
实战 | 源码入门之Faster RCNN
计算机视觉life
19+阅读 · 2019年4月16日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员