This paper learns a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside a pre-trained CNN. Considering that each filter in a conv-layer of a pre-trained CNN usually represents a mixture of object parts, we propose a simple yet efficient method to automatically disentangles different part patterns from each filter, and construct an explanatory graph. In the explanatory graph, each node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More importantly, we learn the explanatory graph for a pre-trained CNN in an unsupervised manner, i.e., without a need of annotating object parts. Experiments show that each graph node consistently represents the same object part through different images. We transfer part patterns in the explanatory graph to the task of part localization, and our method significantly outperforms other approaches.
翻译:本文学习了一个图形模型, 即一个解释性图解, 该图解揭示了在受过训练的CNN 中隐藏的知识等级。 考虑到在受过训练的CNN 的电流层中, 每一个过滤器通常代表物体部件的混合, 我们提出了一个简单而有效的方法, 自动分离每个过滤器的不同部分模式, 并构建一个解释性图解。 在解释性图解中, 每个节点代表一个部分模式, 每个边际编码共同激活关系和各种模式之间的空间关系。 更重要的是, 我们以不受监督的方式, 即不需要说明对象部件, 学习受过训练的CNN CNN 的解释性图表。 实验显示, 每个图形节点通过不同的图像始终代表同一个对象部分。 我们将解释性图中的一部分模式传输到局部化的任务, 我们的方法大大超越了其他方法 。