Parametric 3D body models like SMPL only represent minimally-clothed people and are hard to extend to clothing because they have a fixed mesh topology and resolution. To address these limitations, recent work uses implicit surfaces or point clouds to model clothed bodies. While not limited by topology, such methods still struggle to model clothing that deviates significantly from the body, such as skirts and dresses. This is because they rely on the body to canonicalize the clothed surface by reposing it to a reference shape. Unfortunately, this process is poorly defined when clothing is far from the body. Additionally, they use linear blend skinning to pose the body and the skinning weights are tied to the underlying body parts. In contrast, we model the clothing deformation in a local coordinate space without canonicalization. We also relax the skinning weights to let multiple body parts influence the surface. Specifically, we extend point-based methods with a coarse stage, that replaces canonicalization with a learned pose-independent "coarse shape" that can capture the rough surface geometry of clothing like skirts. We then refine this using a network that infers the linear blend skinning weights and pose dependent displacements from the coarse representation. The approach works well for garments that both conform to, and deviate from, the body. We demonstrate the usefulness of our approach by learning person-specific avatars from examples and then show how they can be animated in new poses and motions. We also show that the method can learn directly from raw scans with missing data, greatly simplifying the process of creating realistic avatars. Code is available for research purposes at {\small\url{https://qianlim.github.io/SkiRT}}.


翻译:类似 SMPL 的 3D 体型模型( 如 SMPL ), 仅代表最起码的穿衣人员, 很难扩展为衣着, 因为他们有固定的网状表层和分辨率。 为解决这些限制, 最近的工作使用隐含表面或指云云来模拟有衣体。 虽然不受地形学的限制, 此类方法仍然难以建模服装, 大大偏离身体, 如裙子和服装等。 这是因为它们依赖身体, 将衣物重新定位到一个参考形状, 使衣物表面变色。 不幸的是, 当衣物远离身体时, 这一过程就定义不清了。 此外, 它们使用线性混合皮质皮质皮质皮质皮质的皮质皮质剥离, 皮质重量被绑定。 相比之下, 我们将服装的变形变形体型建模建模在不光质化空间中, 使多身体部部分影响表面。 具体地说, 我们推广基于点制的“ 皮质” 形状,, 可以从底观察粗的表层测测测, 。 我们从底的体型化的体型化的体型化的体型模型的体型化方法可以显示一个模型的变变变的体力, 。

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员