In this paper we analyze a lowest order virtual element method for the load classic reaction-convection-diffusion problem and the convection-diffusion spectral problem, where the assumptions on the polygonal meshes allow to consider small edges for the polygons. Under well defined seminorms depending on a suitable stabilization for this geometrical approach, we derive the well posedness of the numerical scheme and error estimates for the load problem, whereas for the spectral problem we derive convergence and error estimates for the eigenvalues and eigenfunctions. We report numerical tests to assess the performance of the small edges on our numerical method for both problems under consideration.
翻译:在本文中,我们分析了载重经典反应-对流-扩散问题和对流-扩散光谱问题的最低顺序虚拟元素方法,在这种方法中,多边形间线的假设允许考虑多边形的小边缘。在这种几何方法的适当稳定性所决定的明确界定的半温下,我们得出了数字图和负载问题误差估计的正确性,而对于光谱问题,我们得出了对等值和元件的趋同和误差估计。我们报告了数字测试,以评估我们所考虑的两个问题的数字方法中小边缘的性能。