In this paper, we focus on addressing the open-set face identification problem on a few-shot gallery by fine-tuning. The problem assumes a realistic scenario for face identification, where only a small number of face images is given for enrollment and any unknown identity must be rejected during identification. We observe that face recognition models pretrained on a large dataset and naively fine-tuned models perform poorly for this task. Motivated by this issue, we propose an effective fine-tuning scheme with classifier weight imprinting and exclusive BatchNorm layer tuning. For further improvement of rejection accuracy on unknown identities, we propose a novel matcher called Neighborhood Aware Cosine (NAC) that computes similarity based on neighborhood information. We validate the effectiveness of the proposed schemes thoroughly on large-scale face benchmarks across different convolutional neural network architectures. The source code for this project is available at: https://github.com/1ho0jin1/OSFI-by-FineTuning
翻译:在本文中,我们侧重于通过微调解决一个片面画廊的开放式脸部识别问题。 问题假设了面部识别的现实情景, 即只有少量的脸部图像供入学使用, 在身份识别过程中必须拒绝任何未知身份。 我们观察到,在大型数据集和天真的微调模型上预先训练的面部识别模型对这项任务表现不佳。 我们为此问题提出一个有效的微调计划,配有刻印分器重量和独家BatchNorm层调试。 为了进一步提高未知身份的拒绝准确性,我们提议了一个新奇的匹配者,名为“ 熟知社区”,根据邻里信息计算相似性。 我们验证了在不同革命神经网络结构的大型脸部基准上的拟议计划的有效性。 这个项目的来源代码见: https://github.com/1ho0jin1/OSFI-by-FineTuning。