Drone-captured images present significant challenges in object detection due to varying shooting conditions, which can alter object appearance and shape. Factors such as drone altitude, angle, and weather cause these variations, influencing the performance of object detection algorithms. To tackle these challenges, we introduce an innovative vision-language approach using learnable prompts. This shift from conventional manual prompts aims to reduce domain-specific knowledge interference, ultimately improving object detection capabilities. Furthermore, we streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training, enhancing efficiency without compromising performance. Our study contributes to domain-generalized object detection by leveraging learnable prompts and optimizing training processes. This enhances model robustness and adaptability across diverse environments, leading to more effective aerial object detection.
翻译:暂无翻译