Question retrieval aims to find the semantically equivalent questions for a new question, suffering from a key challenge -- lexical gap. Previous solutions mainly focus on the translation model, topic model and deep learning techniques. Distinct from the previous solutions, we propose new insights of reusing important keywords to construct fine-grained semantic representations of questions and then fine-grained matchings for estimating the semantic similarity of two questions. Accordingly, we design a fine-grained matching network by reusing the important keywords. In the network, two cascaded units are proposed: (i) fine-grained representation unit, which uses multi-level keyword sets to represent question semantics of different granularity; (ii) fine-grained matching unit, which first generates multiple comparable representation pairs for two questions, i.e., keyword set pairs, and then matches the two questions from multiple granularities and multiple views by using the comparable representation pairs, i.e., from global matching to local matching and from lexical matching to semantic matching. To get the multi-level keyword sets of a question, we propose a cross-task weakly supervised extraction model that applies question-question labeled signals from the training set of question retrieval to supervise the keyword extraction process. To construct the comparable keyword set pairs, we design a pattern-based assignment method to construct the comparable keyword set pairs from the multi-level keyword sets of two questions. We conduct extensive experiments on three public datasets and the experimental results show that our proposed model outperforms the state-of-the-art solutions.
翻译:问题检索旨在为一个新问题找到具有关键挑战 -- -- 词汇差距 -- -- 的精密等效问题。 以前的解决方案主要侧重于翻译模型、 主题模型和深层学习技巧。 不同于先前的解决方案, 我们提出新的洞见, 重新使用重要关键字来构建细微的语义表达式, 然后细微匹配来估算两个问题的语义相似性。 因此, 我们用重用重要的关键字来设计一个精细的匹配网络。 在网络中, 提议了两个级联单位:(i) 精细精选代表单位, 它使用多层次关键字组来代表不同颗粒度的语义; (ii) 精选关键字组匹配单位, 它首先为两个问题生成多个可比较的表达式表达式表达式表达式表达式表达式表达式表达式表达式表达器, 我们建议使用基于模型的配对进行全球匹配, 从本地匹配到语义匹配到语义匹配匹配。 将多层次关键字串代表制表达式的多层次关键字表达式表达式表达式的多层次, 我们建议从一个可比较性的关键字义选择的构建一个可比较的关键字结构 提取的构建, 我们提出一个可比较的关键字义选择的构建的构建, 质定定的构建的构建的构建的构建一个跨问题。