Spatio-temporal representational learning has been widely adopted in various fields such as action recognition, video object segmentation, and action anticipation. Previous spatio-temporal representational learning approaches primarily employ ConvNets or sequential models,e.g., LSTM, to learn the intra-frame and inter-frame features. Recently, Transformer models have successfully dominated the study of natural language processing (NLP), image classification, etc. However, the pure-Transformer based spatio-temporal learning can be prohibitively costly on memory and computation to extract fine-grained features from a tiny patch. To tackle the training difficulty and enhance the spatio-temporal learning, we construct a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent efficient Transformer design in NLP, this shifted chunk Transformer can learn hierarchical spatio-temporal features from a local tiny patch to a global video clip. Our shifted self-attention can also effectively model complicated inter-frame variances. Furthermore, we build a clip encoder based on Transformer to model long-term temporal dependencies. We conduct thorough ablation studies to validate each component and hyper-parameters in our shifted chunk Transformer, and it outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600, UCF101, and HMDB51. Code and trained models will be released.


翻译:在行动识别、视频对象分割和预期行动等各个领域广泛采用Spatio-时代代表学习。以前的时代代表学习方法主要采用ConvNets或顺序模型,例如LSTM,以学习框架内和框架间特点。最近,变形模型成功地主导了自然语言处理(NLP)、图像分类等研究。然而,纯半透明基础的600级时代学习可能给记忆和计算造成过高的代价,以便从一个很小的补丁中提取精细的特征。为了解决培训困难,加强时代学习,我们用纯自省块块构建了变形器。利用了NLP最近的高效变形器设计,这种变形模型可以学习从本地小片到全球变形模型的时代特征。我们变形的自我学习也可以有效地模拟复杂的跨框架差异。此外,我们用变形器和变形模型的40级模型、变形模型的变形模型和变形模型的变形模型,我们每个变形模型的变形模型的变形模型的变形模型和变形模型的变形模型的变形模型的变形模型的变形模型都会成为我们的变形的变形的变形的变形的变形模型。

0
下载
关闭预览

相关内容

专知会员服务
10+阅读 · 2021年2月4日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
专知会员服务
53+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月16日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员