Spatio-temporal representational learning has been widely adopted in various fields such as action recognition, video object segmentation, and action anticipation. Previous spatio-temporal representational learning approaches primarily employ ConvNets or sequential models,e.g., LSTM, to learn the intra-frame and inter-frame features. Recently, Transformer models have successfully dominated the study of natural language processing (NLP), image classification, etc. However, the pure-Transformer based spatio-temporal learning can be prohibitively costly on memory and computation to extract fine-grained features from a tiny patch. To tackle the training difficulty and enhance the spatio-temporal learning, we construct a shifted chunk Transformer with pure self-attention blocks. Leveraging the recent efficient Transformer design in NLP, this shifted chunk Transformer can learn hierarchical spatio-temporal features from a local tiny patch to a global video clip. Our shifted self-attention can also effectively model complicated inter-frame variances. Furthermore, we build a clip encoder based on Transformer to model long-term temporal dependencies. We conduct thorough ablation studies to validate each component and hyper-parameters in our shifted chunk Transformer, and it outperforms previous state-of-the-art approaches on Kinetics-400, Kinetics-600, UCF101, and HMDB51. Code and trained models will be released.
翻译:在行动识别、视频对象分割和预期行动等各个领域广泛采用Spatio-时代代表学习。以前的时代代表学习方法主要采用ConvNets或顺序模型,例如LSTM,以学习框架内和框架间特点。最近,变形模型成功地主导了自然语言处理(NLP)、图像分类等研究。然而,纯半透明基础的600级时代学习可能给记忆和计算造成过高的代价,以便从一个很小的补丁中提取精细的特征。为了解决培训困难,加强时代学习,我们用纯自省块块构建了变形器。利用了NLP最近的高效变形器设计,这种变形模型可以学习从本地小片到全球变形模型的时代特征。我们变形的自我学习也可以有效地模拟复杂的跨框架差异。此外,我们用变形器和变形模型的40级模型、变形模型的变形模型和变形模型的变形模型,我们每个变形模型的变形模型的变形模型的变形模型和变形模型的变形模型的变形模型的变形模型的变形模型都会成为我们的变形的变形的变形的变形的变形模型。