Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research.
翻译:神经网络图(GNNs)在节点分类任务上取得了巨大成功。尽管人们对开发和评价GNNs的兴趣广泛,但还是以有限的基准数据集对GNes进行了评估。因此,目前对GNes的评估缺乏各种图表特征的精细分析。为此,我们与一个合成图形生成器进行了广泛的实验,这些生成器能够生成具有控制特性的图表,用于细度分析。我们的实证研究澄清了GNes从四个主要特征中产生的GNes的优缺点,这四个主要特征是带有节点类标签的现实世界图形,即:1)类大小分布(平衡与不平衡 ), 2) 类别之间的边缘连接比例(嗜血病学与异性嗜血学 ), 3) 属性值(斜度与随机性) 和 4) 图形大小(小与大) 。此外,为了促进未来对GNes的研究,我们公开发布我们的代码库,让用户用各种图表来评估各种GNes。我们希望这项工作为未来研究提供有趣的见解。