Over the recent years, Graph Neural Networks have become increasingly popular in network analytic and beyond. With that, their architecture noticeable diverges from the classical multi-layered hierarchical organization of the traditional neural networks. At the same time, many conventional approaches in network science efficiently utilize the hierarchical approaches to account for the hierarchical organization of the networks, and recent works emphasize their critical importance. This paper aims to connect the dots between the traditional Neural Network and the Graph Neural Network architectures as well as the network science approaches, harnessing the power of the hierarchical network organization. A Hierarchical Graph Neural Network architecture is proposed, supplementing the original input network layer with the hierarchy of auxiliary network layers and organizing the computational scheme updating the node features through both - horizontal network connections within each layer as well as the vertical connection between the layers. It enables simultaneous learning of the individual node features along with the aggregated network features at variable resolution and uses them to improve the convergence and stability of the individual node feature learning. The proposed Hierarchical Graph Neural network architecture is successfully evaluated on the network embedding and modeling as well as network classification, node labeling, and community tasks and demonstrates increased efficiency in those.


翻译:近年来,图形神经网络在网络分析中和网络分析中越来越受欢迎,因此,其结构与传统神经网络传统的多层次结构结构明显不同。与此同时,网络科学中的许多常规方法有效地利用等级方法来核算网络的等级组织,以及最近的工作强调其至关重要性。本文件旨在将传统神经网络和图形神经网络结构以及网络科学方法之间的点连接起来,利用层次网络组织的力量。提议了一个等级结构,用辅助网络层的等级补充原始输入网络层,并组织计算方案,通过各层的横向网络连接以及各层之间的纵向连接更新节点特征。它使得能够同时学习个别节点特征以及各种分辨率的汇总网络特征,并利用这些特征来改进个人节点特征学习的趋同和稳定性。拟议中的高级图形神经网络结构正在成功地评价网络嵌入和建模的网络结构,作为网络分类、不设标签和显示网络效率的提高以及社区任务。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
6+阅读 · 2020年10月8日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员