We demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum cut, minimum vertex cover, maximum independent set, as well as Ising spin glasses and higher-order generalizations thereof in the form of polynomial unconstrained binary optimization problems. We apply a relaxation strategy to the problem Hamiltonian to generate a differentiable loss function with which we train the graph neural network and apply a simple projection to integer variables once the unsupervised training process has completed. We showcase our approach with numerical results for the canonical maximum cut and maximum independent set problems. We find that the graph neural network optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems with millions of variables.
翻译:我们展示了如何使用图形神经网络来解决组合优化问题。 我们的方法广泛适用于以二次不受限制的二次优化问题为形式的典型NP硬性问题,如最大削减、最低顶顶层覆盖、最大独立设置,以及旋转眼镜和高排序一般化,其形式为多元且不受限制的双优化问题。 我们对问题应用了放松策略,以产生一种可区分的损失函数,我们用它来训练图形神经网络,并在未受监督的培训进程完成后对整数变量进行简单预测。我们展示了我们的方法,用数字结果来说明罐头最大削减和最大独立设置的问题。我们发现,图形神经网络优化在等或优于现有解决方案上表现,其规模超越了艺术状态,与数以百万计变量有关的问题有关。