Stochastic differential equations (SDEs) are used to describe a wide variety of complex stochastic dynamical systems. Learning the hidden physics within SDEs is crucial for unraveling fundamental understanding of the stochastic and nonlinear behavior of these systems. We propose a flexible and scalable framework for training deep neural networks to learn constitutive equations that represent hidden physics within SDEs. The proposed stochastic physics-informed neural network framework (SPINN) relies on uncertainty propagation and moment-matching techniques along with state-of-the-art deep learning strategies. SPINN first propagates stochasticity through the known structure of the SDE (i.e., the known physics) to predict the time evolution of statistical moments of the stochastic states. SPINN learns (deep) neural network representations of the hidden physics by matching the predicted moments to those estimated from data. Recent advances in automatic differentiation and mini-batch gradient descent are leveraged to establish the unknown parameters of the neural networks. We demonstrate SPINN on three benchmark in-silico case studies and analyze the framework's robustness and numerical stability. SPINN provides a promising new direction for systematically unraveling the hidden physics of multivariate stochastic dynamical systems with multiplicative noise.
翻译:用于描述各种复杂随机动态系统(SDEs)的隐蔽物理差异方程式(SDEs),用于描述各种复杂的随机动态系统。在SDEs中学习隐藏的物理动态系统(SDEs),学习隐藏的物理差异方程式(SDEs),在SDEs中学习隐藏的物理差异方程式(SDEs),学习隐藏的物理差异方程式(SDEs),在SDEs中学习隐藏的物理动态系统(SDES)中学习隐蔽的物理物理动态系统(SDINN),其应用是不确定性的传播和瞬间匹配技术,以及最先进的深层次学习战略。SIPINNN(S)首先通过SDE的已知结构(即已知的物理)来宣传其预知性能性,以预测这些系统(即已知的物理系统)的统计时空演变过程。SIPINN(SPINNPN)通过系统化、稳定、多变现的系统化系统化系统化的SIPI(SDR)的多变现系统,提供稳定、多变现的多式的系统。