We develop a computationally efficient algorithm for the automatic regularization of nonlinear inverse problems based on the discrepancy principle. We formulate the problem as an equality constrained optimization problem, where the constraint is given by a least squares data fidelity term and expresses the discrepancy principle. The objective function is a convex regularization function that incorporates some prior knowledge, such as the total variation regularization function. Using the Jacobian matrix of the nonlinear forward model, we consider a sequence of quadratically constrained optimization problems that can all be solved using the Projected Newton method. We show that the solution of such a quadratically constrained sub-problem results in a descent direction for an exact merit function. This merit function can then be used to describe a formal line-search method. We also formulate a slightly more heuristic approach that simplifies the algorithm and allows for an inexact solution of the sequence of sub-problems. We illustrate the behavior of the algorithm using a number of numerical experiments, with Talbot-Lau X-ray phase contrast imaging as the main application. The numerical experiments confirm that the quadratically constrained sub-problems need not be solved with high accuracy in early iterations to make sufficient progress towards the solution. In addition, we show that the proposed method is able to produce reconstructions of similar quality compared to other state-of-the-art approaches with a significant reduction in computational time.


翻译:我们根据差异原则为非线性反问题自动正规化开发了一种计算高效的算法。 我们将问题发展成一个平等限制优化的问题, 这一问题的制约由最小正方数据忠实术语给出, 并表达差异原则。 目标函数是包含某些先前知识的 convex 正规化功能, 如全变异正规化功能。 我们使用非线性前方模型的Jacobian 矩阵, 考虑一系列可使用预测牛顿方法解决的四边限制优化问题。 我们显示, 这样的四方限制的子问题解决方案导致精确功绩功能的下降方向。 这个功绩功能随后可用于描述正式的线性研究方法。 我们还制定了一种稍稍稍多的螺旋式正规化功能, 将算法简单化, 并允许对子问题模型序列进行不精确的解析。 我们用数字实验来说明算法的行为, 塔尔博- 劳 X- 射 级阶段将成像作为主要应用程序。 数字实验证实, 量性约束的子质值功能可以用来描述一种正式的二次勘测方法, 与早期的精度比的精度的精度分析方法, 我们不需要通过高度的精度的精度方法来解释。 在早期的精度的精度的精度的精度的精度的精度的精度的精度上, 模拟的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
229+阅读 · 2020年5月2日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员