Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
翻译:目前控制对话响应生成的方法主要侧重于诸如风格、情绪或主题等高层次属性。 在这项工作中,我们侧重于有限的长期对话生成,这涉及更精细的控制,并要求在生成的响应中出现一套特定的控制词。这种设置要求一种模式,不仅考虑在近期范围内生成这些控制词,而且还要产生鼓励在(可能遥远的)未来某个时候生成这些词的言论。我们界定了对话生成的长期控制受限的问题,找出了当前评估方法中的差距,并提出了更好地衡量长期控制的新指标。我们还提出了一个检索强化方法,通过登录修改技术改进长期控制生成的性能。我们通过三个任务导向对话数据集的实验表明,我们的指标更好地评估了相对于当前替代品的对话控制,我们的方法超越了受限制生成的状态基线。