We present an in-depth evaluation of four commercially available Speech-to-Text (STT) systems for Swiss German. The systems are anonymized and referred to as system a-d in this report. We compare the four systems to our STT model, referred to as FHNW from hereon after, and provide details on how we trained our model. To evaluate the models, we use two STT datasets from different domains. The Swiss Parliament Corpus (SPC) test set and a private dataset in the news domain with an even distribution across seven dialect regions. We provide a detailed error analysis to detect the three systems' strengths and weaknesses. This analysis is limited by the characteristics of the two test sets. Our model scored the highest bilingual evaluation understudy (BLEU) on both datasets. On the SPC test set, we obtain a BLEU score of 0.607, whereas the best commercial system reaches a BLEU score of 0.509. On our private test set, we obtain a BLEU score of 0.722 and the best commercial system a BLEU score of 0.568.
翻译:我们为瑞士德国人提供了四个商业上可用的语音到文字系统(STT)的深入评价。这些系统匿名,在本报告中被称为A-d系统。我们比较了四个系统与我们的STT模型,从后面称为FHNW, 并详细介绍了我们如何培训我们的模型。为了评价模型,我们使用了两个不同领域的STT数据集。瑞士议会Corpus(SPC)测试集和新闻域的私人数据集,平均分布于七个方言区域。我们提供了详细的错误分析,以发现三个系统的优缺点。这一分析受两个测试组特点的限制。我们的模型在这两个数据集中都获得了最高的双语评估。在SPC测试组中,我们获得了0.607的BLEU分,而最佳商业系统达到0.509的BLEU分。在我们私人测试组中,我们获得了0.722的BLEU分,而最佳商业系统获得0.568的BLEU分。