Object Goal Navigation (ObjectNav) task is to navigate an agent to an object category in unseen environments without a pre-built map. In this paper, we solve this task by predicting the distance to the target using semantically-related objects as cues. Based on the estimated distance to the target object, our method directly choose optimal mid-term goals that are more likely to have a shorter path to the target. Specifically, based on the learned knowledge, our model takes a bird's-eye view semantic map as input, and estimates the path length from the frontier map cells to the target object. With the estimated distance map, the agent could simultaneously explore the environment and navigate to the target objects based on a simple human-designed strategy. Empirical results in visually realistic simulation environments show that the proposed method outperforms a wide range of baselines on success rate and efficiency. Real-robot experiment also demonstrates that our method generalizes well to the real world. Video at https://www.youtube.com/watch?v=R79pWVGFKS4
翻译:对象导航 (ObjectNav) 的任务是在没有预设地图的情况下,在看不见的环境中将一个物剂引导到一个对象类别。 在本文中, 我们通过使用与语义相关的物体作为提示来预测目标距离来完成这项任务。 根据目标对象的估计距离, 我们的方法直接选择最理想的中期目标, 这些目标的路径更可能更短。 具体地说, 根据所学的知识, 我们的模型将鸟眼视图语义地图作为输入, 并估计从边疆地图单元格到目标对象的路径长度。 在估计距离地图中, 该物可以同时探索环境, 并根据简单的人类设计战略向目标对象航行。 视觉现实模拟环境中的经验结果表明, 拟议的方法在成功率和效率上超越了广泛的基线。 真实的机器人实验还表明, 我们的方法对真实世界非常普遍。 视频在 https://www.youtube.com/ watch?v=R79pWGFKS4上 。