Word embeddings provide an unsupervised way to understand differences in word usage between discursive communities. A number of recent papers have focused on identifying words that are used differently by two or more communities. But word embeddings are complex, high-dimensional spaces and a focus on identifying differences only captures a fraction of their richness. Here, we take a step towards leveraging the richness of the full embedding space, by using word embeddings to map out how words are used differently. Specifically, we describe the construction of dialectograms, an unsupervised way to visually explore the characteristic ways in which each community use a focal word. Based on these dialectograms, we provide a new measure of the degree to which words are used differently that overcomes the tendency for existing measures to pick out low frequent or polysemous words. We apply our methods to explore the discourses of two US political subreddits and show how our methods identify stark affective polarisation of politicians and political entities, differences in the assessment of proper political action as well as disagreement about whether certain issues require political intervention at all.


翻译:字嵌入提供了一种不受监督的方式来理解不同社区之间字用法的差异。 最近的一些论文侧重于识别两个或两个以上社区使用的不同词。 但字嵌入是一个复杂、高维的空间,而侧重于识别差异只捕捉到其丰富程度的一小部分。 在这里,我们迈出了一步,通过用字嵌入来绘制如何使用不同词的地图,来充分利用全部嵌入空间的丰富性。 具体地说,我们描述了方言的构建,这是目视探索每个社区使用一个焦点词的特征的不受监督的方式。 根据这些方言,我们提供了一个新的尺度,说明使用不同词的程度,从而克服了现有措施选取低频或多语的倾向。我们运用了我们的方法来探索两个美国政治子编辑的论述,并展示我们的方法如何识别政治家和政治实体的明显影响极化,在评估适当的政治行动方面的差异,以及在某些问题上是否需要政治干预的问题上存在分歧。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员