While a diverse collection of continual learning (CL) methods has been proposed to prevent catastrophic forgetting, a thorough investigation of their effectiveness for processing sequential data with recurrent neural networks (RNNs) is lacking. Here, we provide the first comprehensive evaluation of established CL methods on a variety of sequential data benchmarks. Specifically, we shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs. In contrast to feedforward networks, RNNs iteratively reuse a shared set of weights and require working memory to process input samples. We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements, which lead to an increased need for stability at the cost of decreased plasticity for learning subsequent tasks. We additionally provide theoretical arguments supporting this interpretation by studying linear RNNs. Our study shows that established CL methods can be successfully ported to the recurrent case, and that a recent regularization approach based on hypernetworks outperforms weight-importance methods, thus emerging as a promising candidate for CL in RNNs. Overall, we provide insights on the differences between CL in feedforward networks and RNNs, while guiding towards effective solutions to tackle CL on sequential data.


翻译:虽然提议了多种持续学习方法的收集,以防止灾难性的遗忘,但目前缺乏彻底调查这些方法在利用经常性神经网络处理连续数据方面的效力。在这里,我们对各种连续数据基准的既定CL方法进行首次全面评估。具体地说,我们阐明了在对区域NNS应用权重方法(如弹性重量整合)时出现的特殊性。与向前进网络提供食物相比,区域NNS反复重复重复使用一套共有的权重,并需要工作记忆来处理输入样本。我们表明,权重方法的性能并不直接受到处理序列长度的直接影响,而是受到高工作记忆要求的直接影响,这导致对稳定的需求增加,其代价是学习以后的任务的塑料性降低。我们通过研究线性RNNS,为这种解释提供了更多的理论论据。我们的研究表明,已经建立的CL方法可以成功地移植到经常案例,并且基于超网络的正规化方法超越了输入的权重度方法,从而成为CL的有希望的候选者,同时将CNNF转化为C的视野。

1
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年10月25日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员