The O'Sullivan penalized splines approach is a popular frequentist approach for nonparametric regression. Thereby, the unknown regression function is expanded in a rich spline basis and a roughness penalty based on the integrated squared $q$th derivative is used for regularization. While the asymptotic properties of O'Sullivan penalized splines in a frequentist setting have been investigated extensively, the theoretical understanding of the Bayesian counterpart has been missing so far. In this paper, we close this gap and study the asymptotics of the Bayesian counterpart of the frequentist O-splines approach. We derive sufficient conditions for the entire posterior distribution to concentrate around the true regression function at near optimal rate. Our results show that posterior concentration at near optimal rate can be achieved with a faster rate for the number of spline knots than the slow regression spline rate that is commonly being used. Furthermore, posterior concentration at near optimal rate can be achieved with several different hyperpriors on the smoothing variance such as a Gamma and a Weibull hyperprior.
翻译:O'Sullivan 受处罚的样条方法是一种流行的对非参数回归的常态方法。 因此, 未知的回归功能在丰富的样条基础上扩大, 并使用基于集成正方美元衍生物的粗化惩罚来进行正规化。 虽然对O'Sullivan 受处罚的样条在常态环境中的无症状特性进行了广泛调查, 但巴耶斯对口方的理论理解至今仍然缺失。 在本文中, 我们缩小了这一差距, 并研究了巴伊西亚对口方的经常性O- 样条方法的静态。 我们为整个后方分布提供了足够条件, 以便以接近最佳的速度集中在真实的回归函数周围。 我们的结果表明, 远优于通常使用的缓慢回归样条速度, 后端的集中率可以更快地达到。 此外, 后端集中率几乎是最佳的, 与若干不同的高位点有关平滑度差异, 如伽玛 和 Weibull 高质。