This paper considers the problem of estimating high dimensional Laplacian constrained precision matrices by minimizing Stein's loss. We obtain a necessary and sufficient condition for existence of this estimator, that boils down to checking whether a certain data dependent graph is connected. We also prove consistency in the high dimensional setting under the symmetryzed Stein loss. We show that the error rate does not depend on the graph sparsity, or other type of structure, and that Laplacian constraints are sufficient for high dimensional consistency. Our proofs exploit properties of graph Laplacians, and a characterization of the proposed estimator based on effective graph resistances. We validate our theoretical claims with numerical experiments.
翻译:本文考虑了通过尽量减少Stein的损失来估计高维拉平板压缩精密基体的问题。 我们为这个测算仪的存在获得必要和充分的条件,该测算仪归结为检查某一数据依赖的图表是否相连。 我们还证明了在对称Stein损失下的高维设置的一致性。 我们表明,误差率并不取决于图的偏移性或其他类型的结构,而拉平板限制也足以保证高维一致性。 我们的证据利用了图 Laplacians 的特性,并根据有效的图形阻力对拟议的测算仪进行了定性。 我们用数字实验来验证我们的理论主张。