We consider acoustic scattering in heterogeneous media with piecewise constant wave number. The discretization is carried out using a Galerkin boundary element method in space and Runge-Kutta convolution quadrature in time. We prove well-posedness of the scheme and provide a priori estimates for the convergence in space and time.
翻译:我们考虑的是不同介质中的声学散射,有片段常态波数。 离散使用Galerkin空间和Runge-Kutta回旋振动的边界元素方法进行。 我们证明这个办法的稳妥性,并为空间和时间的趋同提供先验估计。