We study the properties of nonparametric least squares regression using deep neural networks. We derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer of feedforward deep neural regression. Our error bounds achieve minimax optimal rate and significantly improve over the existing ones in the sense that they depend polynomially on the dimension of the predictor, instead of exponentially on dimension. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold or a set with low Minkowski dimension. We also establish the optimal convergence rate under the exact manifold support assumption. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. To establish these results, we derive a novel approximation error bound for the H\"older smooth functions with a positive smoothness index using ReLU activated neural networks, which may be of independent interest. Our results are derived under weaker assumptions on the data distribution and the neural network structure than those in the existing literature.
翻译:我们用深神经网络来研究非对称最小正方回归的特性。 我们为实验风险最小化实验性风险最小化的预测错误而得出非非自然的上界值, 使进向深神经回归最小化。 我们的错误界限实现了微量最佳率, 并大大改进了现有界限, 也就是说它们依赖预测器的多面性, 而不是在维度上成指数。 我们显示神经回归估计仪可以绕过维度的诅咒, 假设预测器以大约低维度的低维元支持, 或使用低明哥斯基维度的集体支持。 我们还在精确的多元支持假设下建立了最佳趋同率。 我们调查神经回归估计仪的预测错误如何取决于神经网络的结构, 并提出了两种神经网络网络之间的网络相对效率概念, 为评估不同网络结构的相对优点提供了定量衡量标准。 为了确立这些结果, 我们为H\"老的光滑度功能定出一个新的近似误差, 并带有正平稳指数, 使用ReLU 活性神经网络, 这可能是独立网络中较弱的假设。