This paper combines modern numerical computation with theoretical results to improve our understanding of the growth factor problem for Gaussian elimination. On the computational side we obtain lower bounds for the maximum growth for complete pivoting for $n=1:75$ and $n=100$ using the Julia JuMP optimization package. At $n=100$ we obtain a growth factor bigger than $3n$. The numerical evidence suggests that the maximum growth factor is bigger than $n$ if and only if $n \ge 11$. We also present a number of theoretical results. We show that the maximum growth factor over matrices with entries restricted to a subset of the reals is nearly equal to the maximum growth factor over all real matrices. We also show that the growth factors under floating point arithmetic and exact arithmetic are nearly identical. Finally, through numerical search, and stability and extrapolation results, we provide improved lower bounds for the maximum growth factor. Specifically, we find that the largest growth factor is bigger than $1.0045n$, and the lim sup of the ratio with $n$ is greater than or equal to $3.317$. In contrast to the old conjecture that growth might never be bigger than $n$, it seems likely that the maximum growth divided by $n$ goes to infinity as $n \rightarrow \infty$.
翻译:本文将现代数字计算与理论结果结合起来, 以增进我们对高山消减增长因素问题的理解。 在计算方面, 我们得到的是使用Julia JuMP 优化软件包实现最大增速最大值的较低限值, 即1美元=1: 75美元, 美元=100美元。 以美元=100美元计算, 增长系数大于3美元。 数字证据表明, 最大增速系数大于美元, 如果值为11美元, 则最高增速系数大于美元。 我们还提供了一些理论结果。 我们显示, 限制在一部分实数条目上的矩阵的最大增速系数与所有实际矩阵的最大增速系数几乎相等。 我们还显示, 浮动点算术和精确算术下的增长系数几乎相同。 最后, 通过数字搜索、 稳定性和外推结果, 我们为最大增速系数提供了更低的下限值。 具体地说, 我们发现, 最大增速系数大于1.045美元, 而以美元计为美元的总增速率大于或等于3. 317美元。 相比之下, 最接近于旧的增速增长, 的增速值似乎以美元为美元。</s>