Many conventional learning algorithms rely on loss functions other than the natural 0-1 loss for computational efficiency and theoretical tractability. Among them are approaches based on absolute loss (L1 regression) and square loss (L2 regression). The first is proved to be an \textit{agnostic} PAC learner for various important concept classes such as \textit{juntas}, and \textit{half-spaces}. On the other hand, the second is preferable because of its computational efficiency, which is linear in the sample size. However, PAC learnability is still unknown as guarantees have been proved only under distributional restrictions. The question of whether L2 regression is an agnostic PAC learner for 0-1 loss has been open since 1993 and yet has to be answered. This paper resolves this problem for the junta class on the Boolean cube -- proving agnostic PAC learning of k-juntas using L2 polynomial regression. Moreover, we present a new PAC learning algorithm based on the Boolean Fourier expansion with lower computational complexity. Fourier-based algorithms, such as Linial et al. (1993), have been used under distributional restrictions, such as uniform distribution. We show that with an appropriate change, one can apply those algorithms in agnostic settings without any distributional assumption. We prove our results by connecting the PAC learning with 0-1 loss to the minimum mean square estimation (MMSE) problem. We derive an elegant upper bound on the 0-1 loss in terms of the MMSE error and show that the sign of the MMSE is a PAC learner for any concept class containing it.


翻译:许多常规学习算法都依赖除自然0-1损失以外的损失函数来计算效率和理论可拉动性。 其中有基于绝对损失( L1回归) 和平方损失( L2回归) 的方法。 第一种被证明是像\ textit{ juntas} 和\ textit{ half- space} 等各种重要概念类的 PAC 学习者。 另一方面, 第二种比较可取, 因为它的计算效率是直线的, 而在样本大小中是线性的。 但是, PAC 的学习能力仍然未知, 因为只有在分配限制下才能证明有保证。 L2 回归是否是一个对 0-1 损失的不可知的 PAC 学习者, 自1993年以来, 这个问题一直没有被解答。 本文解决了在布利安立方体( 证明具有不可知的 P2 多元性) 学习 kjunic P- 的KATS) 问题。 此外, 我们提出了一个新的 PAC 学习算法 新的算法, 以Boolean 4er 为基础, 和低计算复杂度的计算法 。 4er- bourier- broil- sal- sal 运算法, 已经在一次排序算算法 上应用了一种Salal 缩缩算法 缩算法, 缩算算法 错误, 。</s>

0
下载
关闭预览

相关内容

PAC学习理论不关心假设选择算法,他关心的是能否从假设空间H中学习一个好的假设h。此理论不关心怎样在假设空间中寻找好的假设,只关心能不能找得到。现在我们在来看一下什么叫“好假设”?只要满足两个条件(PAC辨识条件)即可
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员