Recent advances in latent space dynamics model from pixels show promising progress in vision-based model predictive control (MPC). However, executing MPC in real time can be challenging due to its intensive computational cost in each timestep. We propose to introduce additional learning objectives to enforce that the learned latent space is proportional derivative controllable. In execution time, the simple PD-controller can be applied directly to the latent space encoded from pixels, to produce simple and effective control to systems with visual observations. We show that our method outperforms baseline methods to produce robust goal reaching and trajectory tracking in various environments.
翻译:象素提供的潜伏空间动态模型最近的进展表明,在基于愿景的模型预测控制(MPC)方面取得了有希望的进展。然而,实时执行多功能模型预测控制(MPC)可能具有挑战性,因为每次时间步骤的计算成本都很高。我们建议引入更多的学习目标,以强制确保所学的潜在空间是成比例衍生物控制的。在操作时间,简单的PD控制器可以直接应用于从像素编码的潜在空间,从而产生简单有效的控制系统,并进行视觉观测。我们表明,我们的方法优于基线方法,从而在不同环境中产生稳健的目标达到和轨迹跟踪。