Various approaches to stochastic processes exist, noting that key properties such as measurability and continuity are not trivially satisfied. We introduce a new theory for Gaussian processes using improper linear functionals. Using a collection of i.i.d. standard normal variables, we define Gaussian white noise and discuss its properties. This is extended to general Gaussian processes on Hilbert space, where the variance is allowed to be any suitable operator. Our main focus is $L^2$ spaces, and we discuss criteria for Gaussian processes to be continuous in this setting. Finally, we outline a framework for statistical inference using the presented theory with focus on the special case of $L^2[0,1]$. We introduce the Fredholm determinant into the functional log-likelihood. We demonstrate that the naive functional log-likelihood is not consistent with the multivariate likelihood. A correction term is introduced, and we prove an asymptotical result.
翻译:存在各种剖析过程的方法, 指出测量性和连续性等关键特性并非微不足道的满足。 我们用不适当的线性功能为高斯进程引入一个新的理论。 我们使用 i. d. 标准正常变量来定义高斯白噪声并讨论其属性。 这扩大到希尔伯特 空间的 高西亚 常规进程, 允许差异为任何合适的操作员。 我们的主要焦点是 $L $2$, 我们讨论高斯进程在此设置中要持续的标准 。 最后, 我们使用 $L2 [ 0. 1 $ 的特例, 绘制了一个统计推论框架, 重点是 $L2 [ 0. 1 $ 。 我们将 Fredholm 决定因素引入函数类似日志 。 我们证明天性日志相似性与多变量的可能性不相符 。 我们引入了修正术语, 并证明这是一个无损效果的结果 。