In a regular full exponential family, the maximum likelihood estimator (MLE) need not exist in the traditional sense. However, the MLE may exist in the completion of the exponential family. Existing algorithms for finding the MLE in the completion solve many linear programs; they are slow in small problems and too slow for large problems. We provide new, fast, and scalable methodology for finding the MLE in the completion of the exponential family. This methodology is based on conventional maximum likelihood computations which come close, in a sense, to finding the MLE in the completion of the exponential family. These conventional computations construct a likelihood maximizing sequence of canonical parameter values which goes uphill on the likelihood function until they meet a convergence criteria. Nonexistence of the MLE in this context results from a degeneracy of the canonical statistic of the exponential family, the canonical statistic is on the boundary of its support. There is a correspondance between this boundary and the null eigenvectors of the Fisher information matrix. Convergence of Fisher information along a likelihood maximizing sequence follows from cumulant generating function (CGF) convergence along a likelihood maximizing sequence, conditions for which are given. This allows for the construction of necessarily one-sided confidence intervals for mean value parameters when the MLE exists in the completion. We demonstrate our methodology on three examples in the main text and three additional examples in the Appendix. We show that when the MLE exists in the completion of the exponential family, our methodology provides statistical inference that is much faster than existing techniques.


翻译:在正常的完全指数式大家庭中,最大的概率估计值(MLE)在传统意义上并不需要存在。然而,在指数式大家庭完成后,MLE可能存在。在完成时找到MLE的现有算法解决了许多线性程序;在小问题中发现MLE的算法很慢,而在大问题中发现MLE的算法太慢。我们为在完成指数式大家庭时找到MLE提供了新的、快速和可缩放的方法。这个方法基于常规的尽可能大的可能性计算,从某种意义上说,在完成指数式大家庭时找到MLE。这些常规计算方法构建了一个可能最大化的班性参数序列,在达到趋同标准之前,可能性的参数会上升,直到它们达到趋同标准。在这个范围内,MLEE不存在一个可能的指数性统计性统计性统计性统计性统计性统计性统计性模型,在显示我们完成率的三个比例时,我们现有渔业信息信息矩阵的绝对性因素与最接近。

0
下载
关闭预览

相关内容

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的另一种方法,最大概似是1821年首先由德国数学家高斯(C. F. Gauss)提出,但是这个方法通常被归功于英国的统计学家罗纳德·费希尔(R. A. Fisher) 它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数theta有关, theta取值不同,则事件A发生的概率P(A/theta)也不同,当我们在一次试验中事件A发生了,则认为此时的theta值应是t的一切可能取值中使P(A/theta)达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【ST2020硬核课】深度学习即统计学习,50页ppt
专知会员服务
65+阅读 · 2020年8月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2018年10月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月15日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【ST2020硬核课】深度学习即统计学习,50页ppt
专知会员服务
65+阅读 · 2020年8月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
7+阅读 · 2018年10月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员