In this paper, we generalize the property of local asymptotic normality (LAN) to an enlarged neighborhood, under the name of rescaled local asymptotic normality (RLAN). We obtain sufficient conditions for a regular parametric model to satisfy RLAN. We show that RLAN supports the construction of a statistically efficient estimator which maximizes a cubic approximation to the log-likelihood on this enlarged neighborhood. In the context of Monte Carlo inference, we find that this maximum cubic likelihood estimator can maintain its statistical efficiency in the presence of asymptotically increasing Monte Carlo error in likelihood evaluation.
翻译:在本文中,我们将当地无症状正常状态(LAN)的属性推广到一个扩大的街区,以重新标定当地无症状正常状态(RLAN)的名义。我们为常规参数模型获得满足RLAN的充分条件。我们表明,RLAN支持建造一个统计效率高的估算器,该估算器能最大限度地接近这个扩大的街区的日志。在蒙特卡洛的推论中,我们发现这一最大可能性的立方概率估测器可以在概率评估中出现无症状地增加Monte Carlo错误的情况下保持其统计效率。