In this paper, we consider an inference problem for the first order autoregressive process driven by a long memory stationary Gaussian process. Suppose that the covariance function of the noise can be expressed as $\abs{k}^{2H-2}$ times a function slowly varying at infinity. The fractional Gaussian noise and the fractional ARIMA model and some others Gaussian noise are special examples that satisfy this assumption. We propose a second moment estimator and prove the strong consistency and give the asymptotic distribution. Moreover, when the limit distribution is Gaussian, we give the upper Berry-Ess\'een bound by means of Fourth moment theorem.
翻译:在本文中,我们考虑了由长期记忆固定过程驱动的第一级自动递减过程的推论问题。 假设噪音的共变功能可以以$abs{k ⁇ 2H-2} 表示, 乘以无限度缓慢变化的函数。 分数高斯噪音和分数ARIMA模型以及其他一些高斯噪音是满足这一假设的特殊例子。 我们提议了第二个秒的测量器, 并证明了强烈的连贯性, 并给出了无药可治分布。 此外, 当限制分布为高斯时, 我们给上层高尔斯- Ess\'een 受第四时刻理论约束的手段约束 。