Unsupervised outlier detection, which predicts if a test sample is an outlier or not using only the information from unlabelled inlier data, is an important but challenging task. Recently, methods based on the two-stage framework achieve state-of-the-art performance on this task. The framework leverages self-supervised representation learning algorithms to train a feature extractor on inlier data, and applies a simple outlier detector in the feature space. In this paper, we explore the possibility of avoiding the high cost of training a distinct representation for each outlier detection task, and instead using a single pre-trained network as the universal feature extractor regardless of the source of in-domain data. In particular, we replace the task-specific feature extractor by one network pre-trained on ImageNet with a self-supervised loss. In experiments, we demonstrate competitive or better performance on a variety of outlier detection benchmarks compared with previous two-stage methods, suggesting that learning representations from in-domain data may be unnecessary for outlier detection.


翻译:未经监督的外星探测, 预测测试样品是否只是外星或并非仅使用未贴标签的内星数据中的信息, 这是一项重要但具有挑战性的任务。 最近, 基于两阶段框架的方法在这项任务上取得了最先进的表现。 该框架利用自我监督的代议制学习算法来训练关于内星数据的特征提取器, 并在外星空间应用一个简单的外星检测器。 在本文中, 我们探讨是否可能避免为每个外星检测任务培训一个不同的代表器的高昂费用, 而不是使用一个经过预先训练的网络作为通用的特征提取器, 而不考虑主域内数据的来源。 特别是, 我们用一个经过预先训练的在图像网络上使用自我监督的损失取代任务特定特征提取器。 在实验中, 我们展示了与前两阶段方法相比各种外星检测基准的竞争性或更好的性能。 这表明, 没有必要从外部数据中学习描述, 来进行外星探测 。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员