This paper proposes BRIEF, a backward reduction algorithm that explores the compact CNN design from the information flow perspective. This algorithm can remove substantial non-zero weighting parameters (redundant neural channels) of a network by considering its dynamic behavior, which traditional model-compaction techniques cannot achieve. With the aid of our proposed algorithm, we achieve significant model reduction on ResNet-34 in ImageNet scale (32.3% reduction), which is 3X better than the previous result (10.8%). Even for highly optimized models such as SqueezeNet and MobileNet, we can achieve additional 10.81% and 37.56% reduction, respectively, with negligible performance degradation.
翻译:本文提出BRIEF, 这是一种从信息流角度探索CNN紧凑设计的后向递减算法。 这一算法可以通过考虑网络动态行为(传统模型组合技术无法实现的动态行为)来消除网络的大量非零加权参数(冗余神经频道 ) 。 借助我们提议的算法,我们实现了图像网比例(32.3%)的ResNet-34(32.3 % ) 大幅降低模型(3x% ), 比前一个结果(10.8%)要好得多。 即使是高度优化的模型(如SqueezeNet 和 MobileNet ), 我们也可以分别实现10.81%和37.56%的减排,而性能退化微乎其微。