Hyperbolic neural networks are able to capture the inherent hierarchy of graph datasets, and consequently a powerful choice of GNNs. However, they entangle multiple incongruent (gyro-)vector spaces within a layer, which makes them limited in terms of generalization and scalability. In this work, we propose to use Poincar\'e disk model as our search space, and apply all approximations on the disk (as if the disk is a tangent space derived from the origin), and thus getting rid of all inter-space transformations. Such an approach enables us to propose a hyperbolic normalization layer, and to further simplify the entire hyperbolic model to a Euclidean model cascaded with our hyperbolic normalization layer. We applied our proposed nonlinear hyperbolic normalization to the current state-of-the-art homogeneous and multi-relational graph networks. We demonstrate that not only does the model leverage the power of Euclidean networks such as interpretability and efficient execution of various model components, but also it outperforms both Euclidean and hyperbolic counterparts in our benchmarks.
翻译:超曲神经网络能够捕捉图形数据集的固有等级, 并因此对 GNN 做出强大的选择。 但是, 它们会把多相容( yro- verctor) 空间嵌入一个层内, 从而限制它们的一般化和可缩放性。 在这项工作中, 我们提议使用 Pincar\'e 磁盘模型作为我们的搜索空间, 并在磁盘上应用所有近似值( 如磁盘是源自源的相近空间), 从而消除所有空间间变换。 这种方法使我们能够提议一个双曲正统层, 并进一步简化整个双曲模式, 将其简化为与我们超曲正统层相联的欧双曲模式。 我们将我们提议的非线超正统模式应用于当前状态的同和多关系图形网络 。 我们证明, 模型不仅能利用Euclidean 网络的力量, 如可解释性和高效地执行各种模型组件,, 而且还超越了我们基准中的 Euclidean 和 双曲线对等对等 。