项目名称: 几类矩阵锥变分不等式的理论与数值算法

项目编号: No.11301348

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 孙菊贺

作者单位: 沈阳航空航天大学

项目金额: 22万元

中文摘要: 矩阵锥变分不等式问题是目前优化领域的一个研究热点,它在统计学,经济学,机器学习,压缩传感等科学和工程领域有着重要的应用。本项目研究由四类矩阵范数定义的矩阵锥约束变分不等式问题的理论与求解方法,这类问题非常重要,因为目前很多重要的矩阵优化问题都可纳入到这个框架之下。本项目以变分分析和扰动分析为基础,借助矩阵锥投影算子微分和几类矩阵锥规划的最新理论成果,研究几类矩阵锥变分不等式问题的最优性理论和求解方法。本项目内容包括研究矩阵锥的P性质;计算投影算子的B-微分;建立矩阵锥变分不等式问题的一阶与二阶最优性理论以及稳定性理论,得到相应的Sigma项;研究求解矩阵锥变分不等式问题的光滑方法;并用光滑方法求解几个有重大有实用价值的矩阵锥变分不等式问题。本项目旨在获得矩阵锥变分不等式问题的最优性理论,探讨光滑函数方法的理论与实现,期望对锥规划的理论研究做贡献。

中文关键词: 矩阵锥变分不等式;BD正则性;光滑函数方法;稳定性分析;

英文摘要: Matrix cone variational inequality problems have been an active area of optimization,since they possess important applications in the fields of science and engineering,such as statistics,economics,machine learning,compressed sensing and so on.The project studies the theory and methods for solving the matrix cone variational inequality problems in which the matrix cones are defined by the epigraph of four matrix norms.This problem is very important, because many important matrix cone optimation problems can be classified into special cases of matrix cone variational inequality problems.Based on the classic theory of variational analysis and perturbation analysis,the project plans to study the optimality theory and numerical methods with the help of the differential of matrix cone projection operator and the latest theory of several types of matrix cone programming problems.The main contents of this project are described as follows:we shall study some P-properties of matrix cones;we shall present the B-differential of the projection operator; we shall wish to establish the first order and the second order optimality theory with sigma term,and the stability theory;we shall apply the smoothing method to solve some significant applications of matrix cone variational inequality problems.The aim of the project is to

英文关键词: Matrix cone variational inequality;BD regularity;smoothing function method;analysis of stability;

成为VIP会员查看完整内容
1

相关内容

【经典书】线性代数与应用,698页pdf
专知会员服务
89+阅读 · 2021年9月27日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
114+阅读 · 2021年7月24日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
3+阅读 · 2022年1月21日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
【经典书】凸优化:算法与复杂度,130页pdf
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
【经典书】线性代数与应用,698页pdf
专知会员服务
89+阅读 · 2021年9月27日
专知会员服务
20+阅读 · 2021年8月24日
专知会员服务
114+阅读 · 2021年7月24日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【干货书】Python科学编程,451页pdf
专知会员服务
127+阅读 · 2021年6月27日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员