Maximal clique enumeration appears in various real-world networks, such as social networks and protein-protein interaction networks for different applications. For general graph inputs, the number of maximal cliques can be up to $3^{|V|/3}$. However, many previous works suggest that the number is much smaller than that on real-world networks, and polynomial-delay algorithms enable us to enumerate them in a realistic-time span. To bridge the gap between the worst case and practice, we consider the number of maximal cliques in two popular models of real-world networks: Euclidean random geometric graphs and hyperbolic random graphs. We show that the number of maximal cliques on Euclidean random geometric graphs is lower and upper bounded by $\exp(\Omega(|V|^{1/3}))$ and $\exp(O(|V|^{1/3+\epsilon}))$ with high probability for any $\epsilon > 0$. For a hyperbolic random graph, we give the bounds of $\exp(\Omega(|V|^{(3-\gamma)/6}))$ and $\exp(O(|V|^{(3-\gamma+\epsilon)/6)}))$ where $\gamma$ is the power-law degree exponent between 2 and 3.
翻译:在各种真实世界网络中,比如社交网络和不同应用的蛋白质-蛋白质互动网络等,出现了各种真实世界网络中的最大晶质计数。对于一般图形输入,最大晶质的数量可能高达3<unk> V<unk> /3}美元。然而,许多先前的著作表明,该数量远小于真实世界网络中的数字,多金属脱差算法使我们能够在现实的时间范围内进行它们计数。为了缩小最差案例与实践之间的差距,我们考虑两个现实世界网络流行模型中的最大晶质数量:Euclidean随机几何图和超双曲线随机图。我们显示,Euclidean随机几何图中的最大晶质数量比实际世界网络中的数字要小得多,而且上限为$(\Omega (V<unk> 1/3) 美元) 和 $ex\exexexexexex(O\\\\\\\\\\\\\\\ Q_Q__Q_Q________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________</s>