Most recent head pose estimation (HPE) methods are dominated by the Euler angle representation. To avoid its inherent ambiguity problem of rotation labels, alternative quaternion-based and vector-based representations are introduced. However, they both are not visually intuitive, and often derived from equivocal Euler angle labels. In this paper, we present a novel single-stage keypoint-based method via an {\it intuitive} and {\it unconstrained} 2D cube representation for joint head detection and pose estimation. The 2D cube is an orthogonal projection of the 3D regular hexahedron label roughly surrounding one head, and itself contains the head location. It can reflect the head orientation straightforwardly and unambiguously in any rotation angle. Unlike the general 6-DoF object pose estimation, our 2D cube ignores the 3-DoF of head size but retains the 3-DoF of head pose. Based on the prior of equal side length, we can effortlessly obtain the closed-form solution of Euler angles from predicted 2D head cube instead of applying the error-prone PnP algorithm. In experiments, our proposed method achieves comparable results with other representative methods on the public AFLW2000 and BIWI datasets. Besides, a novel test on the CMU panoptic dataset shows that our method can be seamlessly adapted to the unconstrained full-view HPE task without modification.
翻译:最近的头形估计( HPE) 方法由 Euler 角度代表法( HPE) 主导。 为了避免其固有的旋转标签模糊性问题, 引入了替代四环基和矢量代表法。 但是, 这两种方法都不是视觉直观的, 往往来自不清晰的 Euler 角度标签。 在本文中, 我们通过 prit intotovision} 提出一个新的单阶段关键点基础方法, 并保留 3- DoF 头部的3D 立方代表法, 用于联合头部检测和进行估测。 2D 立方体是3D 常规六环形标签围绕一个头部, 本身包含着头部位置的正方形投影。 它可以直接和清晰地在任何旋转角度中反映头部方向。 与一般 6- DoF 对象构成估计不同, 我们的 2D 立方块忽略了头部大小的 3- DoF, 但保留了头部的 3- DoF。 基于相同的侧长度之前, 我们可以不努力地获得 Euler 角度 的封闭式解决方案的解决方案的解决方案的解决方案, 从预测 2D 方向, 而不是在不完全的 方向上应用 C- WFPWSVI 测试方法, 上, 将我们的拟议的常规数据测试方法用于 的常规方法 的常规的常规的测试。