项目名称: 氧化锌基纳米复合高温热电材料热导及热电性能调控的研究

项目编号: No.51206103

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 吴子华

作者单位: 上海第二工业大学

项目金额: 25万元

中文摘要: 氧化锌(ZnO)高温化学稳定性好,载流子迁移率和热电功率因子高,是极具潜力的高温热电材料。然而较高的热导率阻碍了其热电性能的进一步提升,限制了ZnO的推广应用。本项目拟在ZnO中引入弥散导电聚合物纳米颗粒,以导电聚合物与ZnO之间形成的大量有机-无机纳米异质结(纳米结)界面为基础,设计、制备纳米复合热电材料。利用有机分子与无机材料之间较大的原子/晶格振动差异,降低声子导热;通过调节纳米结的结构特性、含量及分布,提高纳米结界面热阻;利用有机分子和无机半导体在电子结构上的本质差异,通过调节纳米结界面各组份的电子能带/能级结构的匹配性,提高赛贝克系数;从而最终制备出高转换效率的有机-无机纳米复合热电材料。从实验和理论两方面探索复合材料的交互作用、相容性和配比与热导及热电性能之间的关联规律,为设计合成此类高性能热电材料提供相关的实验和理论依据。

中文关键词: 热导率;纳米复合;氧化锌;热电材料;导电聚合物

英文摘要: ZnO is a promising thermoelectric materails for high temperature because of the excellent chemical stability at and high charge carrier mobility. However, the lattice thermal conductivity of these materials is high and then the figure of merit of ZnO is hard to improve.The use of ZnO as thermoelectric materials is confined. Nanocomposite has been shown to be an effective way to decrease lattice thermal conductivity and then improve thermoelectric properties. The objective of this research is to synthesze ZnO-based inorganic-organic nanocomposites (nanojunctions) with high thermoelectric properties. Due to the large mismatch of lattice vibrational spectra between inorganic molecule and organic bulk materials in nanocomposites, the scattering of phonons across a broad wavelength spectrum was enhanced. This suppressed the lattice thermal conductivity of the nanocomposites significantly. Because of the difference of electronic structure between inorganic molecule and organic semiconductor, the Seebeck coefficient and electric conductivity may be improved by modifying inorganic molecule dispersing state and content, structure properties of heterojunctions, and band structure of organic semiconductor and inorganic molecule. The relationship of thermoelectric properties of nanocomposites and inorganic-organic heterojun

英文关键词: Thermal conductivity;Nanocomposite;Zinc oxide;Thermoelectric materials;Conducting polymers

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
专知会员服务
29+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Building Odia Shallow Parser
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
22+阅读 · 2018年2月14日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年6月26日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
专知会员服务
29+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员