Recent work on image anonymization has shown that generative adversarial networks (GANs) can generate near-photorealistic faces to anonymize individuals. However, scaling these networks to the entire human body has remained a challenging and yet unsolved task. We propose a new anonymization method that generates close-to-photorealistic humans for in-the-wild images.A key part of our design is to guide adversarial nets by dense pixel-to-surface correspondences between an image and a canonical 3D surface.We introduce Variational Surface-Adaptive Modulation (V-SAM) that embeds surface information throughout the generator.Combining this with our novel discriminator surface supervision loss, the generator can synthesize high quality humans with diverse appearance in complex and varying scenes.We show that surface guidance significantly improves image quality and diversity of samples, yielding a highly practical generator.Finally, we demonstrate that surface-guided anonymization preserves the usability of data for future computer vision development
翻译:最近关于图像匿名化的工作表明,基因对抗网络(GANs)能够给匿名个人带来近光现实面,然而,将这些网络扩大到整个人体仍是一项艰巨而又尚未解决的任务。我们提出了一种新的匿名化方法,为在不相通的图像生成近光对光现实人。我们设计的一个重要部分是通过图像和3D罐头表面之间密集的像素对地对地对面通信来指导对抗网。我们引入了挥发式地表适应性移动(V-SAM),将地面信息嵌入整个发电机。随着我们新颖的辨别器地表监督的丢失,发电机可以将高品质的人合成出来,在复杂和不同的场面上出现不同的外观。我们表明,地面指导大大提高了图像质量和样本的多样性,产生了一种非常实用的生成器。最后,我们证明地制的匿名化保留了数据对未来计算机视觉开发的可用性。