The success of soft robots in displaying emergent behaviors is tightly linked to the compliant interaction with the environment. However, to exploit such phenomena, proprioceptive sensing methods which do not hinder their softness are needed. In this work we propose a new sensing approach for soft underwater slender structures based on embedded pressure sensors and use a learning-based pipeline to link the sensor readings to the shape of the soft structure. Using two different modeling techniques, we compare the pose reconstruction accuracy and identify the optimal approach. Using the proprioceptive sensing capabilities we show how this information can be used to assess the swimming performance over a number of metrics, namely swimming thrust, tip deflection, and the traveling wave index. We conclude by demonstrating the robustness of the embedded sensor on a free swimming soft robotic squid swimming at a maximum velocity of 9.5 cm/s, with the absolute tip deflection being predicted within an error less than 9% without the aid of external sensors.
翻译:软机器人在显示突发行为方面的成功与符合环境的相互作用紧密相连。 但是,为了利用这些现象,需要使用不阻碍其软性的自觉感知方法。 在这项工作中,我们提议了一种基于嵌入式压力传感器的软水下滑体结构新感测方法,并使用基于学习的管道将感应读数与软结构的形状联系起来。我们使用两种不同的模型技术,比较重建的准确性并确定最佳方法。我们利用自觉感测能力,我们展示了如何利用这些信息来评估一些测量指标的游泳性能,即游泳推力、倾斜和移动波指数。我们最后通过展示一个免费游动软机械式乌贼传感器在最大速度为9.5厘米/秒(9.5厘米/秒)下游动的稳健性能,在没有外部传感器帮助的情况下,在错误不到9%的情况下预测绝对的倾斜度。