In the field of network security, with the ongoing arms race between attackers, seeking new vulnerabilities to bypass defense mechanisms and defenders reinforcing their prevention, detection and response strategies, the novel concept of cyber deception has emerged. Starting from the well-known example of honeypots, many other deception strategies have been developed such as honeytokens and moving target defense, all sharing the objective of creating uncertainty for attackers and increasing the chance for the attacker of making mistakes. In this paper a methodology to evaluate the effectiveness of honeypots and moving target defense in a network is presented. This methodology allows to quantitatively measure the effectiveness in a simulation environment, allowing to make recommendations on how many honeypots to deploy and on how quickly network addresses have to be mutated to effectively disrupt an attack in multiple network and attacker configurations. With this optimum, attacks can be detected and slowed down with a minimal resource and configuration overhead. With the provided methodology, the optimal number of honeypots to be deployed and the optimal network address mutation interval can be determined. Furthermore, this work provides guidance on how to optimally deploy and configure them with respect to the attacker model and several network parameters.


翻译:在网络安全领域,随着攻击者之间正在进行的军备竞赛,随着攻击者之间的军备竞赛,寻求新的弱点,绕过防御机制和捍卫者加强其预防、探测和应对战略,出现了新的网络欺骗概念;从众所周知的蜜罐的例子开始,制定了许多其他欺骗策略,如蜂窝和移动目标防御,所有这些策略都具有为攻击者制造不确定性和增加攻击者犯错机会的目标;在本文件中提出了评价蜂窝有效性和移动网络目标防御的方法;这一方法允许对模拟环境中的效力进行定量衡量,以便能够就部署多少蜜罐和网络地址必须如何迅速变异提出建议,以有效扰乱多网络和攻击者配置的攻击;有了这一最佳方法,就可以检测到攻击,并以最少的资源和配置间接费用减缓攻击速度;根据所提供的方法,可以确定部署蜜壶的最佳数目和最佳网络地址的突变间隔。此外,这项工作指导如何在攻击者模型和若干网络参数方面进行最佳部署和配置。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员