We propose a data-driven optimization-based pre-compensation method to improve the contour tracking performance of precision motion stages by modifying the reference trajectory and without modifying any built-in low-level controllers. The position of the precision motion stage is predicted with data-driven models, a linear low-fidelity model is used to optimize traversal time, by changing the path velocity and acceleration profiles then a non-linear high-fidelity model is used to refine the previously found time-optimal solution. We experimentally demonstrate that the proposed method is capable of simultaneously improving the productivity and accuracy of a high precision motion stage. Given the data-based nature of the models, the proposed method can easily be adapted to a wide family of precision motion systems.
翻译:我们建议采用基于数据驱动的优化前补偿方法,通过修改参考轨迹和不修改任何内置低层控制器改进精确运动阶段的轮廓跟踪性能。精确运动阶段的位置是用数据驱动模型预测的,使用线性低纤维模型来优化穿梭时间,改变路径速度和加速度剖面,然后使用非线性高纤维化模型来完善以前找到的时间最佳解决方案。我们实验性地证明,拟议方法能够同时提高高精准运动阶段的生产率和准确性。鉴于模型的数据基础性质,拟议方法可以很容易地适应广泛的精准运动系统。