Location trajectories collected by smartphones and other devices represent a valuable data source for applications such as location-based services. Likewise, trajectories have the potential to reveal sensitive information about individuals, e.g., religious beliefs or sexual orientations. Accordingly, trajectory datasets require appropriate sanitization. Due to their strong theoretical privacy guarantees, differential private publication mechanisms receive much attention. However, the large amount of noise required to achieve differential privacy yields structural differences, e.g., ship trajectories passing over land. We propose a deep learning-based Reconstruction Attack on Protected Trajectories (RAoPT), that leverages the mentioned differences to partly reconstruct the original trajectory from a differential private release. The evaluation shows that our RAoPT model can reduce the Euclidean and Hausdorff distances between the released and original trajectories by over 68% on two real-world datasets under protection with $\varepsilon \leq 1$. In this setting, the attack increases the average Jaccard index of the trajectories' convex hulls, representing a user's activity space, by over 180%. Trained on the GeoLife dataset, the model still reduces the Euclidean and Hausdorff distances by over 60% for T-Drive trajectories protected with a state-of-the-art mechanism ($\varepsilon = 0.1$). This work highlights shortcomings of current trajectory publication mechanisms, and thus motivates further research on privacy-preserving publication schemes.


翻译:智能手机和其他装置收集的定位轨迹是用于定位服务等应用的宝贵数据源。 同样, 轨迹有可能披露个人敏感信息, 例如宗教信仰或性取向。 因此, 轨迹数据集需要适当的消毒。 由于其强大的理论隐私保障, 不同的私人发布机制受到极大关注。 然而, 实现差异隐私系统所需的大量噪音将产生结构性差异, 例如, 船舶轨迹通过陆地。 我们提议在受保护轨迹上进行基于深度学习的重建攻击( RAoPT), 利用上述轨迹差异从差异私人发布中部分重建原始轨迹。 评估显示, 我们的轨迹数据集模型可以将Euclidean和Hausdorf之间的距离减少68%以上, 在两个真实世界数据集中, 以 $varepsilon=lef$1美元来保护。 在此环境中, 攻击会进一步增加当前轨迹轨迹轨迹的轨迹上的轨迹定位索引( RAPPT), 以 80% 的轨迹模型和 IMLLI 的系统, 将减少用户的太空空间活动。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月25日
Arxiv
0+阅读 · 2022年11月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员