When optimizing software for the cloud, monolithic applications need to be partitioned into many smaller *microservices*. While many tools have been proposed for this task, we warn that the evaluation of those approaches has been incomplete; e.g. minimal prior exploration of hyperparameter optimization. Using a set of open source Java EE applications, we show here that (a) such optimization can significantly improve microservice partitioning; and that (b) an open issue for future work is how to find which optimizer works best for different problems. To facilitate that future work, see [https://github.com/yrahul3910/ase-tuned-mono2micro](https://github.com/yrahul3910/ase-tuned-mono2micro) for a reproduction package for this research.


翻译:当优化云层的软件时,需要将单一应用软件分割成许多较小的*微生物服务*。虽然为这项任务提出了许多工具,但我们警告说,对这些方法的评价是不完整的;例如,对超参数优化进行最低限度的事先探索。我们在这里显示,(a) 这种优化可以大大改进微服务分割;以及(b) 未来工作的未决问题是如何找到对不同问题最有效的优化方法。为便利今后的工作,请见[https://github.com/yrahul3910ase-dond-mono2micro](https://github.com/yrahul3910ase-dono2micro),用于本研究的复制包。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Ship Performance Monitoring using Machine-learning
Arxiv
0+阅读 · 2021年10月7日
From STL Rulebooks to Rewards
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月5日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员