This paper presents a novel Subject-dependent Deep Aging Path (SDAP), which inherits the merits of both Generative Probabilistic Modeling and Inverse Reinforcement Learning to model the facial structures and the longitudinal face aging process of a given subject. The proposed SDAP is optimized using tractable log-likelihood objective functions with Convolutional Neural Networks (CNNs) based deep feature extraction. Instead of applying a fixed aging development path for all input faces and subjects, SDAP is able to provide the most appropriate aging development path for individual subject that optimizes the reward aging formulation. Unlike previous methods that can take only one image as the input, SDAP further allows multiple images as inputs, i.e. all information of a subject at either the same or different ages, to produce the optimal aging path for the given subject. Finally, SDAP allows efficiently synthesizing in-the-wild aging faces. The proposed model is experimented in both tasks of face aging synthesis and cross-age face verification. The experimental results consistently show SDAP achieves the state-of-the-art performance on numerous face aging databases, i.e. FG-NET, MORPH, AginG Faces in the Wild (AGFW), and Cross-Age Celebrity Dataset (CACD). Furthermore, we also evaluate the performance of SDAP on large-scale Megaface challenge to demonstrate the advantages of the proposed solution.


翻译:本文介绍了一个新的基于主题的深老化路径(SDAP),它继承了一个基于主题的创用概率模型和反强化学习的优点,它同时继承了一个特定主题的生成概率模型和反强化学习的优点,以模拟面部结构以及纵向面部老化过程。提议的SDAP使用基于 Convolutional神经网络(CNNs)的深地貌提取的可移植日志相似目标功能优化了SDAP。SDAP没有对所有输入面部和主题应用固定的老化发展路径,而是为所有输入面部和主题应用了固定的老化发展路径。与以前只使用一个图像作为输入的模型和反反强化学习方法不同,SDAP还允许将多种图像作为输入,即同一或不同年龄的一个主题的所有信息,为该特定主题生成最佳的老化路径。SDAP能够有效地合成和交叉面部的面部。拟议模型在面部挑战解决方案和交叉核查两个任务中进行实验。实验结果一致显示SDAP实现州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州

3
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
62+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
62+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员