This paper presents a novel Subject-dependent Deep Aging Path (SDAP), which inherits the merits of both Generative Probabilistic Modeling and Inverse Reinforcement Learning to model the facial structures and the longitudinal face aging process of a given subject. The proposed SDAP is optimized using tractable log-likelihood objective functions with Convolutional Neural Networks (CNNs) based deep feature extraction. Instead of applying a fixed aging development path for all input faces and subjects, SDAP is able to provide the most appropriate aging development path for individual subject that optimizes the reward aging formulation. Unlike previous methods that can take only one image as the input, SDAP further allows multiple images as inputs, i.e. all information of a subject at either the same or different ages, to produce the optimal aging path for the given subject. Finally, SDAP allows efficiently synthesizing in-the-wild aging faces. The proposed model is experimented in both tasks of face aging synthesis and cross-age face verification. The experimental results consistently show SDAP achieves the state-of-the-art performance on numerous face aging databases, i.e. FG-NET, MORPH, AginG Faces in the Wild (AGFW), and Cross-Age Celebrity Dataset (CACD). Furthermore, we also evaluate the performance of SDAP on large-scale Megaface challenge to demonstrate the advantages of the proposed solution.
翻译:本文介绍了一个新的基于主题的深老化路径(SDAP),它继承了一个基于主题的创用概率模型和反强化学习的优点,它同时继承了一个特定主题的生成概率模型和反强化学习的优点,以模拟面部结构以及纵向面部老化过程。提议的SDAP使用基于 Convolutional神经网络(CNNs)的深地貌提取的可移植日志相似目标功能优化了SDAP。SDAP没有对所有输入面部和主题应用固定的老化发展路径,而是为所有输入面部和主题应用了固定的老化发展路径。与以前只使用一个图像作为输入的模型和反反强化学习方法不同,SDAP还允许将多种图像作为输入,即同一或不同年龄的一个主题的所有信息,为该特定主题生成最佳的老化路径。SDAP能够有效地合成和交叉面部的面部。拟议模型在面部挑战解决方案和交叉核查两个任务中进行实验。实验结果一致显示SDAP实现州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州