Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of domain experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.
翻译:自动机器学习(自动学习)的目的是在机器学习出现问题的情况下,自动找到最佳的机器学习解决方案,这可以解除多种手工调整过程的数据科学家的负担,使域专家能够在没有广泛经验的情况下获得现成的机器学习解决方案,在本文中,我们从三个类别,即自动地物工程(自动地物工程)、自动模型和超光谱学习(自动MHL)以及自动深层学习(自动DL)等方面,审查自动ML目前的发展动态。 介绍了这三类中采用的最新技术,包括巴耶西亚优化、强化学习、演化算法和梯度法。我们总结了流行的自动ML框架,并总结了目前对自动解运的公开挑战。